Corrigé exercice 86:

- 1. $\overrightarrow{AB}\begin{pmatrix}1\\2\\4\end{pmatrix}$ et $\overrightarrow{AC}\begin{pmatrix}-2\\1\\5\end{pmatrix}$. Or $\frac{1}{-2}\neq\frac{2}{1}$ donc les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires. Ainsi, les points A,B et C ne sont pas alignés et définissent le plan (ABC).
- 2. (a) $M(x; y; z) \in (ABC)$ si, et seulement si, les vecteurs \overrightarrow{AM} , \overrightarrow{AB} et \overrightarrow{AC} sont coplanaires. C'est-à-dire si, et seulement si, il existe deux réels t et t' tels que $\overrightarrow{AM} = t\overrightarrow{AB} + t'\overrightarrow{AC}$.
 - (b) Donc $M \in (ABC)$ si, et seulement si, $\begin{cases} x 1 = 1t 2t' \\ y 2 = 2t + t' \\ z + 3 = 4t + 5t' \end{cases} \Leftrightarrow \begin{cases} x = t 2t' + 1 \\ y = 2t + t' + 2 \\ z = 4t + 5t' 3 \end{cases}$ avec $t \in \mathbb{R}$
 - (c) $E(1;4;-7) \in (ABC)$ si, et seulement si, il existe deux réels t et t' tels que :

$$\begin{cases} 1 = t - 2t' + 1 \\ 4 = 2t + t' + 2 \\ -7 = 4t + 5t' - 3 \end{cases} \Leftrightarrow \begin{cases} t - 2t' = 0 & (1) \\ 2t + t' = 2 & (2) \\ 4t + 5t' = -4 & (3) \end{cases}$$

On résout le système composé des équations (1) et (2).

$$\begin{cases} t - 2t' = 0 \\ 2t + t' = 2 \end{cases} \Leftrightarrow \begin{cases} t - 2t' = 0 \\ 5t' = 2 \end{cases} \Leftrightarrow \begin{cases} t = \frac{4}{5} \\ t' = \frac{2}{5} \end{cases}$$

On vérifie la compatibilité de ces deux valeurs avec l'équation (3) du système initial : $4t + 5t' = 4 \times \frac{4}{5} + 5 \times \frac{2}{5} = \frac{26}{5} \neq -4$.

Le système n'est pas compatible. Le point E n'appartient pas au plan (ABC).

3. La droite d admet pour vecteur directeur $\overrightarrow{u} \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix}$.

d est parallèle au plan (ABC) si, et seulement si, les vecteurs \overrightarrow{u} , \overrightarrow{AB} et \overrightarrow{AC} sont coplanaires. Or, $\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{AC}$. Les vecteurs \overrightarrow{u} , \overrightarrow{AB} sont coplanaires et la droite d est parallèle au plan (ABC). D'après la représentation paramétrique de la droite d, le point E(1;4;-7) appartient à d. Or, $E \notin (ABC)$. La droite d est donc strictement parallèle au plan(ABC).