Exercice 1

On a posé à 1 000 personnes la question suivante : « Combien de fois êtes-vous arrivé en retard au travail au cours des deux derniers mois? ». Les réponses ont été regroupées dans le tableau suivant :

ois		Retards 1 ^{er} mois			
Retards 2 ^e mo		0	1	2 ou plus	Total
	0	262	212	73	547
	1	250	73	23	346
	2 ou plus	60	33	14	107
	Total	572	318	110	1 000

- 1) Lecture du tableau. On choisit au hasard un individu de cette population.
 - a) Déterminer la probabilité P que l'individu ait eu au moins un retard le premier mois.
 - b) Déterminer la probabilité P' que l'individu ait eu au moins un retard le deuxième mois sachant qu'il n'en a pas eu le premier mois.
- 2) On souhaite faire une étude de l'évolution du nombre de retards sur un grand nombre *n* de mois (*n* entier naturel non nul). On fait les hypothèses suivantes :
 - si l'individu n'a pas eu de retard le mois n, la probabilité de ne pas en avoir le mois n + 1 est 0,46.
 - si l'individu a eu exactement un retard le mois n, la probabilité de ne pas en avoir le mois n + 1 est 0,66.
 - si l'individu a eu deux retards ou plus le mois *n*, la probabilité de ne pas en avoir le mois *n* + 1 est encore 0,66.

On note A_n : l'événement « l'individu n'a eu aucun retard le mois n »,

 B_n : l'événement « l'individu a eu exactement un retard le mois n »,

 C_n : l'événement « l'individu a eu deux retards ou plus le mois n ».

- Les probabilités de A_n, B_n, C_n sont notées respectivement p_n , q_n et r_n .
- a) Pour le premier mois, les probabilités p_1 , q_1 et r_1 sont obtenues à l'aide du tableau précédent. Déterminer les probabilités p_1 , q_1 et r_1 .
- b) Exprimer p_{n+1} en fonction de p_n , q_n , et r_n . On pourra s'aider d'un arbre.
- c) Montrer que : $\forall n \in \mathbb{N}^*, \ p_{n+1} = -0, 2p_n + 0, 66.$
- d) Soit la suite (u_n) définie sur \mathbb{N}^* par : $u_n = p_n 0,55$. Démontrer que (u_n) est une suite géométrique dont on donnera la raison.
- e) Déterminer $\lim_{n \to +\infty} u_n$. En déduire $\lim_{n \to +\infty} p_n$. Interpréter ce résultat dans le contexte de l'énoncé.

Exercice 2

Dans une entreprise, on s'intéresse à la probabilité qu'un salarié soit absent durant une période d'épidémie de grippe.

- Un salarié malade est absent
- La première semaine de travail, le salarié n'est pas malade.

- Si la semaine n le salarié n'est pas malade, il tombe malade la semaine n + 1 avec une probabilité égale à 0,04.
- Si la semaine n le salarié est malade, il reste malade la semaine n + 1 avec une probabilité égale à 0, 24.

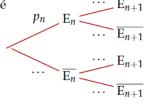
On note, pour tout entier naturel $n \ge 1$, l'événement :

 E_n : « le salarié est absent pour cause de maladie la *n*-ième semaine ».

On note p_n la probabilité de l'événement E_n .

On a ainsi : $p_1 = 0$ et pour tout $n \ge 1$, $0 \le p_n < 1$.

- 1) a) Déterminer la valeur de p₃ à l'aide d'un arbre de probabilité.
 - b) Sachant que le salarié a été absent pour cause de maladie la troisième semaine, déterminer la probabilité qu'il ait été aussi absent pour cause de maladie la deuxième semaine.
- 2) a) Recopier et compléter l'arbre de probabilité donné ci-contre $p_n = E_n$



- b) Montrer que, pour tout entier naturel $n \ge 1$: $p_{n+1} = 0, 2p_n + 0, 04$.
- c) Montrer que la suite (u_n) définie sur N* par u_n = p_n − 0,05 est une suite géométrique dont on donnera le premier terme et la raison *q*.
 En déduire l'expression de u_n puis de p_n en fonction de *n*.

En deduire l'expression de u_n puis de p_n en fonction d

- d) En déduire la limite de la suite (p_n) .
- e) On admet dans cette question que la suite (*p_n*) est croissante. On considère l'algorithme ci-contre :

À quoi correspond l'affichage final m? Pourquoi est-on sûr que cet algorithme s'arrête? On pose k = 3, déterminer m.



- 3) Cette entreprise emploie 220 salariés. On admet que la probabilité pour qu'un salarié soit malade une semaine donnée durant cette période d'épidémie est égale à p = 0,05. On suppose que l'état de santé d'un salarié ne dépend pas de l'état de santé de ses collègues. On désigne par X la variable aléatoire qui donne le nombre de salariés malades une semaine donnée.
 - a) Justifier que la variable aléatoire X suit une loi binomiale dont on donnera les paramètres.
 - b) Calculer l'espérance mathématique E(X) et l'écart type $\sigma(X)$ puis déterminer la probabilité que $X \in [E(X) \sigma(X); E(X) + \sigma(X)]$